Jumat, 18 November 2016

INTUISIONISME DALAM ALIRAN MATEMATIKA



INTUISIONISME DALAM ALIRAN MATEMATIKA

Intuisionisme adalah aliran filsafat dalam tradisi Kant bahwa semua pengetahuan manusia diawali oleh intuisi, menghasilkan konsep-konsep, dan diakhiri dengan ide-ide. Setidaknya untuk semua tujuan praktis, segala sesuatu, termasuk matematika, hanya ada dalam pikiran. Aliran Intuisionisme mulai dikembangkan sekitar 1908 oleh matematikawan Belanda L.J.W. Brouwer (18821966), meskipun beberapa ide awal intuisionisme diketahui telah ada, seperti yang dirumuskan Kronecker (1890-an) dan Poincare antara 1902-1906. L.E.J. Brouwer menyatakan bahwa matematika adalah kreasi pikiran manusia. Bilangan ibarat karakter dalam cerita dongeng, hanyalah entitas mental, yang tidak akan pernah ada, kecuali dalam pikiran manusia yang memikirkannya. Jadi, intuisionisme menolak keberadaan obyek-obyek dalam matematika.
Aliran Intuisionisme tidak memandang kebenaran matematis sebagai struktur obyektif seperti pendapat aliran Formalisisme dan Logisisme. Menurut aliran ini, matematika tidak akan dapat seluruhnya dilambangkan, berpikir matematis tidak tergantung pada bahasa tertentu yang digunakan untuk mengungkapkannya. Pengetahuan dari proses matematis haruslah sedemikian sehingga proses itu dapat diperluas hingga tak terbatas. 
Tesis aliran Intusionisme adalah matematika harus dibangun semata-mata atas dasar metode konstruktif finit (dalam sejumlah langkah yang hingga) dengan dasar barisan bilangan asli yang diketahui secara intuitif. 
Menurut aliran ini, pada dasar yang paling dalam terletak intuisi primitif, bersekutu dan bekerja sama dengan akal duniawi manusia, yang memungkinkan manusia mengangankan suatu obyek tunggal, kemudian satu lagi, satu lagi dan seterusnya tak berakhir. Dengan cara ini diperoleh barisan tak berakhir, yang dikenal dengan barisan bilangan alam. Dengan menggunakan dasar intuitif bilangan asli ini, sebarang obyek matematika harus dibangun dengan cara konstruktif murni, dengan menggunakan operasi dan langkah-langkah yang banyaknya berhingga. 
Bagi kaum Intuisionis, suatu himpunan tak boleh dipikirkan sebagai koleksi yang telah siap jadi, akan tetapi harus dipandang sebagai hukum yang elemen-elemennya dapat atau harus dikonstruksi selangkah demi selangkah. Konsep himpunan seperti ini dapat membebaskan matematika dari kemungkinan terjadinya kontradiksi, seperti munculnya kontradiksi pada pernyataan ”himpunan semua himpunan”. Kaum Intuisionis juga menolak pendapat aliran formalisme bahwa hukum excluded midle dan hukum kontradiksi adalah ekuivalen. 

Tidak ada komentar:

Posting Komentar